China factory Flange Motor Guide Shaft Coupling Connector Shaft Accessory DIY RC Mode motor coupling

Product Description

 

Product Description

 

The product has a compact structure, a compact body, and is made of iron. It is not easy to rust after galvanizing treatment, and has undergone heat treatment and electroplating, with toughness and insulation. High strength, high precision, durability, smooth surface, no burrs, good practicality, small screw hole 180 degree design, easy to install and replace.
Flange nut is a type of nut with a wide flange at 1 end, used as an integral non rotating washer and widely used for connecting car model shafts. Exquisite and practical, with high structural strength and firmness. The perfect accessory for RC model motors.

 

 

 

 

 

Specification and model

Shaft aperture D1

Shaft aperture D2

outside  diameter

entire length

( mm )

( mm )

( mm )

( mm )

 

190802

2

2

19

9

190803

3

3

19

9

221

4

4

22

10.5

221

5

5

31

13

 

 

 

Due to too many product specifications and models, they cannot be displayed 1 by 1 on the front desk. Specific specifications are required
The model can be consulted with customer service.

Detailed Photos

 

Full length sample drawing, sample processing, and customization of various irregular parts
Due to product specifications, production process, order quantity, and product requirements
Due to differences and fluctuations in raw materials, product prices may randomly vary significantly
Distance: The price of our company’s products varies with the price of raw materials and the level of drawing technology
Transformation. So the product prices we have marked are for reference only, in order to obtain accurate quotes
Price, please contact our customer service personnel for understanding.

Our Advantages

Customization process:
Scheme design – Product sampling – Scheme confirmation – Sample confirmation – Batch production – Quality inspection and shipment

Company Profile

Certifications

 

FAQ

system certification:
ISO 9 , GMP , BSCI , BRC , SA 8
ownership type:
Limited Company
registered capital:
10000000 RMB
site area:
101~500 square meter

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

motor coupling

Can Motor Couplings Compensate for Angular, Parallel, and Axial Misalignments?

Yes, motor couplings are designed to compensate for different types of misalignments, including angular, parallel, and axial misalignments. The ability to accommodate misalignment is a key feature of motor couplings, and various coupling types offer different levels of misalignment compensation:

1. Angular Misalignment:

Angular misalignment occurs when the motor and driven equipment shafts are not perfectly aligned in the same plane, causing an angle between them. Motor couplings, especially flexible couplings, can effectively compensate for angular misalignment. Flexible couplings like jaw couplings, beam couplings, and oldham couplings can tolerate angular misalignment to a certain extent while transmitting torque smoothly.

2. Parallel Misalignment:

Parallel misalignment happens when the motor and driven equipment shafts are not perfectly aligned along their axis, leading to offset displacement. Flexible couplings, such as bellows couplings and disc couplings, are well-suited to accommodate parallel misalignment. These couplings can maintain good misalignment tolerance while providing high torsional stiffness for efficient torque transmission.

3. Axial Misalignment:

Axial misalignment occurs when there is a linear offset between the motor and driven equipment shafts along the axis. For some flexible couplings, a limited amount of axial misalignment can be tolerated. However, specific coupling types, such as self-aligning ball bearing couplings, are more suitable for handling higher levels of axial misalignment.

It is important to note that while motor couplings can compensate for misalignment, they have their limits. Excessive misalignment can lead to premature wear, reduced efficiency, and potential coupling failure. Proper alignment during installation and regular maintenance are essential to ensure the coupling’s misalignment compensation remains effective over time.

When selecting a motor coupling, consider the type and amount of misalignment expected in your application. Choose a coupling that offers the required level of misalignment compensation, ensuring smooth power transmission and extending the lifespan of the coupling and connected components.

“`motor coupling

Temperature and Speed Limits for Different Motor Coupling Types

Motor couplings come in various types, and each type has its temperature and speed limits. These limits are essential considerations to ensure the coupling operates safely and efficiently. Here are the general temperature and speed limits for different motor coupling types:

1. Elastomeric Couplings:

Elastomeric couplings, such as jaw couplings and spider couplings, are commonly used in a wide range of applications. They typically have temperature limits of approximately -40°C to 100°C (-40°F to 212°F). The speed limits for elastomeric couplings typically range from 3,000 to 6,000 RPM, depending on the specific coupling design and size.

2. Gear Couplings:

Gear couplings are known for their high torque capacity and durability. The temperature limits for gear couplings are usually between -50°C to 150°C (-58°F to 302°F). The speed limits for gear couplings can be as high as 5,000 to 10,000 RPM or more, depending on the size and design.

3. Disc Couplings:

Disc couplings provide high torsional stiffness and are often used in precision applications. The temperature limits for disc couplings are typically around -40°C to 200°C (-40°F to 392°F). The speed limits for disc couplings can range from 5,000 to 20,000 RPM or more.

4. Grid Couplings:

Grid couplings are known for their shock absorption capabilities. The temperature limits for grid couplings are usually between -30°C to 100°C (-22°F to 212°F). The speed limits for grid couplings typically range from 3,600 to 5,000 RPM.

5. Oldham Couplings:

Oldham couplings are often used to transmit motion between shafts with significant misalignment. The temperature limits for Oldham couplings are generally around -30°C to 80°C (-22°F to 176°F). The speed limits for Oldham couplings are usually up to 3,000 to 5,000 RPM.

6. Diaphragm Couplings:

Diaphragm couplings are suitable for applications requiring high precision and torque transmission. The temperature limits for diaphragm couplings are typically between -50°C to 300°C (-58°F to 572°F). The speed limits for diaphragm couplings can be as high as 10,000 to 30,000 RPM.

It is essential to check the manufacturer’s specifications and recommendations for the specific coupling model to ensure the coupling operates within its intended temperature and speed limits. Operating the coupling beyond these limits may lead to premature wear, reduced performance, or even catastrophic failure. Properly selecting a coupling that matches the application’s temperature and speed requirements is critical for reliable and safe operation.

“`motor coupling

Types of Motor Couplings and Their Applications in Different Industries

Motor couplings come in various types, each designed to meet specific requirements and applications in different industries. Here are some common types of motor couplings and their typical uses:

1. Rigid Couplings:

Rigid couplings provide a solid and inflexible connection between the motor shaft and the driven equipment. They are ideal for applications where precise alignment and torque transmission are critical. Rigid couplings are commonly used in machine tools, robotics, and high-precision industrial equipment.

2. Flexible Couplings:

Flexible couplings are designed to accommodate misalignment between the motor and driven equipment shafts. They can handle angular, parallel, and axial misalignment, reducing stress on bearings and increasing the system’s flexibility. Flexible couplings find applications in pumps, compressors, conveyors, and other machinery where misalignment may occur due to vibration or thermal expansion.

3. Gear Couplings:

Gear couplings use toothed gears to transmit torque between the motor and the driven equipment. They provide high torque capacity and are suitable for heavy-duty applications, such as steel rolling mills, cranes, and marine propulsion systems.

4. Disc Couplings:

Disc couplings use thin metal discs to transmit torque. They offer high torsional stiffness, allowing precise motion control in applications like servo systems, CNC machines, and robotics.

5. Jaw Couplings:

Jaw couplings use elastomeric elements to dampen vibrations and accommodate misalignment. They are commonly used in small electric motors and general-purpose machinery.

6. Bellows Couplings:

Bellows couplings have a flexible accordion-like structure that compensates for misalignment while maintaining torsional rigidity. They are used in vacuum systems, optical equipment, and other high-precision applications.

7. Grid Couplings:

Grid couplings use a flexible grid element to transmit torque and dampen vibrations. They are suitable for applications in pumps, compressors, and conveyor systems where shock loads and misalignment are common.

8. Magnetic Couplings:

Magnetic couplings use magnetic fields to transmit torque between the motor and driven equipment. They are commonly used in applications requiring hermetic sealing, such as pumps and mixers handling hazardous or corrosive fluids.

Each type of motor coupling offers unique advantages and is chosen based on the specific needs of the industry and the application. Proper selection and installation of the right coupling type enhance efficiency, reliability, and safety in motor-driven systems across various industries.

“`
China factory Flange Motor Guide Shaft Coupling Connector Shaft Accessory DIY RC Mode   motor couplingChina factory Flange Motor Guide Shaft Coupling Connector Shaft Accessory DIY RC Mode   motor coupling
editor by CX 2024-04-23

motor coupling

As one of leading motor coupling manufacturers, suppliers and exporters of mechanical products, We offer motor coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of motor coupling

Recent Posts